
ORIGINAL PAPER

Atomistic modeling of parylene-metal interactions
for surface micro-structuring

Alex V. Vasenkov

Received: 16 November 2010 /Accepted: 26 January 2011 /Published online: 3 March 2011
# Springer-Verlag 2011

Abstract Many applications, ranging from neural prosthetics
and cardiac rhythm management systems to organics-based
flexible display, can benefit from the engineering of parylene-
metal-parylene structures via selective deposition. Despite
several experimental studies, the mechanism responsible for
this selective deposition is not clear and is the subject of the
current paper. Towards this goal, we used the quantum
semiempirical Hamiltonian (QSH) solver coupled to a
molecular dynamic (MD) model, which is particularly suited
to study parylene-metal interactions due to its ability to
determine the different pathways of the transformations
involving making and breaking of chemical and physical
bonds. The simulation results of selective deposition of
various parylene chains on titanium dioxide and gold surfaces
are presented. Time-dependent bond orders were used to
quantify the deposition process. The mechanism of metal
atom adhesion to parylene was also discussed to provide
insights into the formation of defects in metal/parylene
interfaces.

Keywords Atomistic modeling . Parylene-metal
interactions . Surface micro-structuring

Introduction

Fabrication of microstructured electrode surfaces is of great
interest to many applications, ranging from neural pros-
thetics [1, 2] and cardiac rhythm management systems [3]

to organics-based flexible display [4]. Most of these
applications require the engineering of isolated micro-
sized islands of conformal polymer coating on electrode
surfaces. Conventional methods of fabrication of such
islands involve photolithography process. Unfortunately,
this process requires the use of solvents and acids, resulting
in polymer surface defect formation via undesirable
chemical side reactions. One way of avoiding photolithog-
raphy is the patterning of an electrode via controlled
deposition of conformal polymer coatings [3, 5]. Parylene
and its derivatives have showed great promise in enabling
selective deposition of such a conformal coating. For
example, selective inhibition of both non-reactive parylene
coatings [6, 7] as well as reactive parylene coatings [8]
have been reported.

Despite several experimental studies [6–8], the mecha-
nism of parylene-metal interactions responsible for the
observed selective inhabitation is not clear and is the
subject of the current paper. Towards this goal, we use
molecular dynamic (MD) methods, which are particularly
suited to study parylene-metal interactions due to the ability
to determine the different pathways of transformations
involving the making and breaking of chemical and
physical bonds. Force fields (interatomic potentials) play a
critical role in MD modeling. Classical MD models with
empirical reactive force fields are suitable for modeling
polymers [9], but are too simple to predict complex
polymer–metal interactions. Ideally, high level ab initio
molecular-orbital or density-functional calculations should
be used in computing force fields to eliminate any need for
parameters. The primary drawback of such an approach is
the large amount of computational time required, which
limits the MD method to studying small clusters only. In
this work, we used the quantum semiempirical Hamiltonian
(QSH) solver coupled to the MD model to gain insight into
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the physical adsorption and chemical reactions that occur
during metal/polymer interface formation.

The advantage of our method is its ability to model
breaking and making bonds within the quantum chemical
framework orders of magnitude faster than with ab initio
methods. QSH-MD offers a compromise between high-
level quantum description and computational speed. Over
the past 50 years, QSH techniques have been developed
extensively as computationally more efficient alternatives
to ab initio methods [10]. PM6-QSH [10] parameterization
implemented in MOPAC 7.2 was used in this work for the
accurate modeling of polymer/metal interactions. The paper
is arranged as follows. First, we briefly describe the QSH-
MD model used to model elementary reaction pathways on
a complex potential energy surface at a finite temperature.
Then, the QSH-MD simulation results of deposition of
commercial chloro-p-xylylene and dichloro-p-xylylene, and
functionalized (reactive) vinyl-p-xylylene on gold (Au) and
titanium dioxide (TiO2) surfaces are presented. Time-
dependent bond orders were used to quantify the deposition
process. Finally, the mechanism of adhesion of bio-
compatible platinum (Pt) and iridium (Ir) metals as well
as adhesion of the promoter titanium (Ti) to parylene-C and
Parylene-HT chains are discussed to provide insight into the
formation of defects in metal/parylene interfaces.

Models

Coupled QSH-MD modeling

In this section we outline the model used for modeling
elementary reaction pathways on a complex potential
energy surface at a finite temperature. This model couples
classical MD simulation with QSH modeling. The details of
the model have been described previously [11, 12], so only
a brief outline is given here.

QSH-MD coupling

Existing QSH models typically are either not capable of
computing gradients for periodic systems or do it extremely
slowly [13]. To address this problem, we used two groups
of atoms in our MD simulations: empirical atoms located at
the bottom and sides, and quantum atoms forming a cluster
surrounded by empirical atoms. Interactions between
empirical atoms, and between empirical atoms and quantum
cluster were simulated using empirical (analytical) Morse
potential [14]. Forces acting on quantum atoms were
modeled based on a molecular-cluster QSH approach as
detailed below. The quantum atoms were used to model
physical adsorption and chemical reactions, while empirical
atoms were used to eliminate side effects.

At the end of each dynamic step in the MD module,
coordinates of atoms constituting a quantum cluster were
saturated with hydrogen atoms and transferred to the QSH
module. Instantaneous potential energy and interatomic forces
were computed in the QSH module and fed back to the MD
module. Here, the contributions from the ghost hydrogen
atoms were zeroed, and forces acting on quantum atoms were
combined with the Morse-type forces computed for empirical
atoms. In the first iteration between MD and QSH modules, a
default guess of molecular orbital coefficients was used. At
subsequent iterations, the set of molecular orbital coefficients
describing the electronic structure at the previous time step
was used to reduce the time needed to reach self consistent
field (SCF). At the end of iterations in the QSH module, bond
orders, charge densities, and other quantum mechanics
properties were calculated from the density matrix elements.
This information was used in the visualization of chemical
reactions and surface motion.

MD module

The MD module is based on a numerical solution of the
many-body problem of classical mechanics. For an isolated
system containing a constant number of atoms N in a fixed
volume V, the atomic motion is given by Newton’s
equations,

~FiðtÞ ¼ m
d2~ri
dt2
¼ � @U ~r1;~r2; :::~rNð Þ

@~ri
; ð1Þ

Where ~Fi is the force acting on atom i caused by the N−1
other atoms and U is the potential energy depending on the
positions of atoms in the system. Iteratively integrating Eq. 1,
one can obtain trajectories of each atom. Beeman’s third-
order predictor algorithm was used to integrate Newton’s
equations of motion. This algorithm is written as [15]

~rnþ1 ¼~rn þ~vnþ1Δt þ 1

6
4~an �~an�1ð Þ Δtð Þ2 ð2Þ

~vnþ1 ¼~vn þ 1

6
2~anþ1 þ 5~an �~an�1ð Þ Δtð Þ ð3Þ

where r
 
n; is the position, ~vn is the velocity, ~an is the

acceleration on the n-th time step, and Δt is the duration of
time step. A time step of 0.5 fs was typically used in MD
computations to maintain stable dynamics.

Effective temperature control in MD simulations was
achieved using the Berendsen thermostat method. In this
method, atomic velocities are scaled after each dynamic
time step by a factor h given by [16]

h ¼ 1þ Δt

t
To
T
� 1

� �� �1=2
ð4Þ
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where t is an adjustable parameter, To is the desired
temperature to be maintained, and T is the instantaneous
temperature of the system.

Construction of surface models

The models of Au and TiO2 surfaces were constructed by
truncating an infinite crystal lattice of interest to a size that
is computationally tractable. Figure 1 shows truncation of
Au face-centered cubic crystal lattice schematically [17].
The surface model of (110) TiO2 adopted from [18] is given
in Fig. 2. Boundary ghost atoms were added to eliminate
bottom- and side-surface effects. In QSH calculations, the
boundaries of clusters consisting of quantum atoms were
saturated with “ghost” hydrogen atoms as shown in Fig. 2.
The distance between the ghost hydrogen atoms, and the
quantum cluster was determined by scaling distances
between quantum and empirical boundary atoms.

The MOPAC 7.2 quantum chemical package with
parameterization accounting for d orbitals was used to
compute interatomic potentials due to its ability to model
interactions with transition metal atoms [10]. The lowest
electronic state of the quantum cluster was determined

using the PM6 semi-empirical SCF methods of the MOPAC
7.2 software. PM6 parameterization was developed to
match experimental heat of formation rather than bond
energies. Therefore, we tested both unrestricted Hartree–
Fock (UHF) and configuration interaction (CI) methods for
bond energy and bond length, and determined that CI
typically gives better accuracy. This is due to the presence
of degenerate d-orbitals where single configuration is an
inaccurate description of the wave function [10]. Conse-
quently, the CI method was used to obtain the simulation
results presented in this paper.

Au–Au interactions are difficult to describe as they result
from electron correlation of the closed-shell components,
somewhat similar to van der Waals interactions but unusually
strong due to relativistic effects [17, 19]. We found that PM6
Hamiltonian gives an Au–Au bond energy of 8.1 kcal mol−1

and a bond length of 2.8 Å. These results are in very good
agreement with the literature bond energy of 7–12 kcal
mol−1 and bond length of 2.7–3.3 Å [17, 19, 20]. The bond
order, which gives an indication of the stability of the Au–
Au bond, was 0.06 due to the weak Au–Au interactions. We
also tested the use of PM6 Hamiltonian for predicting TiO2

crystal lattice. Bond lengths between the different pairs of Ti
and O atoms obtained using PM6-QSH are compared with
the literature data in Table 1. We found that the ratios of
experimental Ti–O bond lengths were reproduced qualita-
tively by the PM6 QSH model, but the absolute PM6 Ti–O
bond lengths typically over-estimate experimental and ab
initio data as previously discussed [10, 21].

Computational details

QSH-MD simulations were conducted using an AMD-64
Opteron 2600 MHz computer system. The duration of QSH-
MD jobs depended strongly on the number of quantum atoms,
and varied from 48 to 240 CPU hours. The number of
quantum atoms used in the QSHmodule varied from 50 atoms
for metal–parylene adhesion simulations to over 100 atoms
for modeling the deposition of poly-p-xylylenes on metal

Fig. 1 Schematic demonstrating the truncation of Au face-centered
cubic crystal lattice to a computationally tractable surface model.
Quantum Au atoms (yellow spheres) were passivated with hydrogen
atoms (white spheres) for computing quantum semiempirical Hamil-
tonian (QSH) potential. See text for details

Fig. 2 Surface models of titanium dioxide. Quantum Ti atoms (brown
spheres) were passivated with hydrogen atoms (white spheres) for
computing QSH potential. See text for details
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surfaces. TheMOPAC 7.2-QSHmodel often has convergence
issues if the number of atoms exceeds 150.

Selective deposition of poly-p-xylylenes on metals

The contrasting deposition of poly-p-xylylenes on titanium
and gold—two popular metals used in the fabrication of
implantable electrodes [2]—was determined. For this pur-
pose, we considered commercial chloro-p-xylylene and
dichloro-p-xylylene as well as functionalized (reactive)
vinyl-p-xylylene [8]. The structure of selected poly-p-
xylylenes is presented in Fig. 3. A poly-p-xylylene was
placed 5–6 Å above the metal surface with thermal velocity
pointed toward the surface. The geometry of the metal
surface consisting of quantum atoms and empirical atoms,
introducing boundary potential at the side walls, was
optimized by minimizing its potential energy. Our QSH-
MD model is very efficient in determining the minimum
potential energy configuration via a dynamic quenching
procedure [11]. In this procedure, the velocities of individual
atoms were monitored and reset to zero when they had
reached a maximum value. The high efficiency of the
procedure is due to the inverse relationship between kinetic
and potential energies. When the velocity of an atom is large,
its potential energy must be small. After the energy
minimization procedure, the metal surface was equilibrated
at 300 K. Initial interactions between a poly-p-xylylene and a
metal surface were weak as tested by computing a bond
order. Typically, the initial bond order was below 10−3.

Chloro-p-xylylene deposition

The deposition of chloro-p-xylylene on TiO2 and Au
surfaces is visualized in Fig. 4. Comparing the results at 0
and 0.25 ps shows that the shape of chloro-p-xylylene was
affected substantially by interactions with the TiO2 surface.
In contrast, in the case of the Au surface, the chloro-p-
xylylene shape evolved weakly from the initial configura-
tion. A polar bond was formed between chloro-p-xylylene
and the Au surface at 0.5 ps, and between chloro-p-
xylylene and TiO2 at 0.75 ps. Chloro-p-xylylene bonds
preferentially to O atoms rather than to Ti atoms due to the

Fig. 3 Nonfunctionalized chloro-p-xylylene and dichloro-p-xylylene,
and functionalized (reactive) vinyl-p-xylylene were considered to
study selective deposition. Cl, C, and H atoms are represented by tan,
cyan, and white spheres, respectively

Table 1 Relaxed bond lengths for selected Ti–O atom pairs in the TiO2 (110) surface model. Results from the MOPAC 7.2 PM6 Hamiltonian
[10] used in this study are compared with literature data

Bond label Bond length (Å)

Experimental (1997) [29] Experimental (2005) [30] Ab initio [18] Present 7.2 MOPAC

I 1.71±0.07 1.85 1.84 1.97

II 2.15±0.09 2.15 2.04 2.28

III 1.84±0.05 1.90 1.92 2.22
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Fig. 4 Deposition of chloro-p-
xylylene on titanium dioxide
(TiO2) and gold (Au)
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higher electronegativity of O. Results at 1 ps confirm the
completion of chloro-p-xylylene deposition. The stability of
the bonds established was checked further via calculations
of a few picoseconds in duration.

Quantitative description of the deposition process can be
obtained by analyzing time-dependent profiles of bond
orders, as presented in Fig. 5. In the case of the TiO2

surface, the initial bond order between C1–C2 atoms was
slightly less than 2.0 due to the strain resulting from the
presence of the TiO2 surface. The formation of the bond
between chloro-p-xylylene and the TiO2 surface at about
0.6 ps was accompanied by further weakening of the C1–C2

bond. The C1–O bond formed was strong, with the bond
order close to 1. The order of the C1 –Ti bond was below
0.2 due to the weak C–Ti interaction. In the case of the Au
surface, the bond order between C1–C2 atoms decreased
from 1.9 to 1.6 during the deposition, indicating that the
structure of chloro-p-xylylene was affected by interactions
with the Au surface. The simulation results indicate that
chloro-p-xylylene bonds preferentially to a solid Au trimer.

Dichloro-p-xylylene deposition

The deposition of dichloro-p-xylylene on TiO2 and Au
surfaces is shown in Fig. 6. In the case of the TiO2 surface,

the shape of dichloro-p-xylylene is visibly distorted by
interaction with the TiO2 surface. However, in contrast to
the deposition of chloro-p-xylylene, no bond formation
between dichloro-p-xylylene and the TiO2 surface was

Fig. 6 Deposition of dichloro-p-xylylene on TiO2 and Au

Fig. 5 Time-dependent profiles of bond orders during the deposition
of chloro-p-xylylene on TiO2 and Au. Designations for atoms are
given in Fig. 4
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observed. This is due to the higher electronegativity of
dichloro-p-xylylene owing to Cl substitution of H [22]. In
the case of the Au surface, dichloro-p-xylylene formed
stable bonds at about 0.5 ps.

Time-dependent profiles of bond orders during the metal–
dichloro-p-xylylene interactions are given in Fig. 7. In the case
of the TiO2 surface, the order of the C1–C2 bond fluctuates
near 1.6 due to the strains resulting from the TiO2 surface.
The orders of C1–O and C1–Ti bonds are below 0.03. In the
case of the Au surface, the formation of bonds between
dichloro-p-xylylene and the solid Au trimer was observed.

Vinyl-p-xylylene deposition

The deposition of vinyl-p-xylylene on TiO2 and Au
surfaces is shown in Fig. 8. In the case of the TiO2 surface,
vinyl-p-xylylene did not approach the surface indicating the
lack of adsorption. In the case of the Au surface, vinyl-p-
xylylene bonded to the surface at about 0.5 ps. Time-
dependent profiles of bond orders are given in Fig. 9. In the
case of the TiO2 surface, the order of C1–C2 bond fluctuates
at 1.7, while the orders of C1–O and C1–Ti bonds are below
3×10−4 due to the weak interactions with the TiO2 surface.
In the case of the Au surface, the formation of bonds

Fig. 7 Time-dependent profiles of bond orders during the deposition
of dichloro-p-xylylene on TiO2 and Au. Designations for atoms are
given in Fig. 6

Fig. 8 Deposition of vinyl-p-xylylene on TiO2 and Au �
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between vinyl-p-xylylene and the solid Au trimer was
observed in a manner similar to that discussed for chloro-p-
xylylene and dichloro-p-xylylene.

The absence of bond formation between vinyl-p-xylylene
and the TiO2 surface is due to the electronegativity of the vinyl

group, whose value can be estimated by Eg ¼
VcEcþ

P
n

NnEn

N
[23]. Here, Vc and Ec are the valence of the central atom and
its atomic electronegativity, respectively. Nn and En are the
number of bonds towards the central atom and the electro-
negativity of the n-th atom (group), respectively. N is the sum
of the valence of the central atom and the number of bonds
towards the central atom. The estimated electronegativity of
the vinyl group is 2.45, which is lower than the electroneg-
ativity of Cl in chloro-p-xylylene. Based on this consideration,
and the results of chloro-p-xylylene–TiO2 interactions pre-
sented in Figs. 4 and 5, one would expect that vinyl-p-
xylylene should form a bond with TiO2. However, the results
presented in Fig. 8 and Fig. 9 contradict this conclusion. This
disagreement can be explained as follows. The C–Cl bond in
chloro-p-xylylene is a highly polar bond [22]. As a result of
this, TiO2 is capable of forming a CO bond with chloro-p-
xylylene only when the highly electronegative Cl atom

remains distant from the surface, as shown in Fig. 4. In
contrast, vinyl-p-xylylene does not have a strong polar
bond. In addition, the estimated electronegativity of the
vinyl group of 2.45 is higher than the electronegativity of
H of 2.20, which is substituted by the vinyl group to form
vinyl-p-xylylene. This explains the absence of adsorption
of vinyl-p-xylylene on TiO2.

Selective adhesion of metal atoms to parylene

Lack of adhesion of metal atoms to a parylene surface is
known to be responsible for the formation of defects in
metal/parylene interfaces (W. Li, personal communication).
To gain insight into metal/parylene adhesion, we considered
the deposition of Ir and Pt on parylene-C and parylene-HT
polymer chains. Ir and Pt are often used in implants due to
their outstanding bio-compatible properties [24]. Time-
dependent profiles of bond orders during the deposition of
Pt and Ir on parylene-C (top panel) and parylene-HT
(bottom panel) polymer chains are shown in Fig. 10. It was
observed that Ir, with a lower electronegativity of 2.2, can
form only a temporary bond with poly-p-xylylenes. In
contrast, Pt, with a higher electronegativity of 2.3, can form

Fig. 9 Time-dependent profiles of bond orders during the deposition
of vinyl-p-xylylene on TiO2 and Au. Designations for atoms are given
in Fig. 8

Fig. 10 Time-dependent profiles of bond orders during the deposition
of Pt and Ir on parylene-C (top panel) and parylene-HT (bottom panel)
polymer chains
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a stable bond with both parylene-C and parylene-HT
substrates.

The adhesion of Pt, and especially Ir, to parylene can be
improved by introducing a promoter between parylene and
a biocompatible metal such as Ti. To illustrate this, we
conducted QSH-MD modeling of Ti deposition on
parylene-C and parylene-HT polymer chains. In both cases,
the formation of a strong C=Ti double bond was observed,
as shown in Figs. 11 and 12. This is an agreement with the
DFT bonding analysis reported in [25]. In contrast to the
deposition of Pt and Ir, the deposition of Ti was
accompanied by reactions. For example, in the case of
parylene-C, a transition metal-catalyzed hydrogen transfer
reaction was detected. Time dependent Ti–H1 and Ti–H2

bond orders are shown in Fig. 11. The ability of Ti to
extract hydrogen from chemical compounds consisting of
carbon and hydrogen is detailed in the literature [26, 27]. In
the case of parylene-HT, Ti–C bond formation was
accompanied by C–F bond breaking and Ti–F bond
formation. These finding are in agreement with the
fundamental principles of C–F bond activation and break-
ing mediated by transition metal centers as discussed
previously [28].

Summary

To gain insight into surface microstructuring, parylene–
metal interactions were studied via MD simulations in
conjunction with QSH modeling. The advantage of model
is its ability to trace breaking and making chemical and
physical bonds in real time within the quantum chemical
framework, orders of magnitude faster than ab initio
models. The selectivity of deposition of various poly-p-
xylylenes on TiO2 surfaces was demonstrated. The absence
of bond formation of dichloro-p-xylylene or vinyl-p-
xylylene with TiO2 surfaces was explained in terms of
electrostatic repulsion. In contrast, the formation of stable
bonds between poly-p-xylylenes and solid Au trimers was
observed in all cases.

Mechanisms of metal atom adhesion on parylene
surfaces were also studied since these have been linked to
the formation of defects in metal/parylene interfaces. Good
adhesion of Pt, and poor adhesion of Ir to parylene was
attributed to the lower electronegativity of Ir. It was
demonstrated that Ti, often introduced as a promoter
between parylene and a biocompatible metal, is capable of
forming strong C=Ti double bonds.

Fig. 12 QSH-molecular dymanics (MD) results demonstrating the
deposition of Ti on a parylene-HT polymer chain

Fig. 11 Time-dependent profiles of bond orders during the deposition
of Pt and Ir on parylene-C (top panel) and parylene-HT (bottom panel)
polymer chains
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